Lipoxygenase-mediated oxidation of polyunsaturated N-acylethanolamines in Arabidopsis.
نویسندگان
چکیده
N-acylethanolamines (NAEs) are bioactive fatty acid derivatives that occur in all eukaryotes. In plants, NAEs have potent negative growth-regulating properties, and fatty acid amide hydrolase (FAAH)-mediated hydrolysis is a primary catabolic pathway that operates during seedling establishment to deplete these compounds. Alternatively, polyunsaturated (PU)-NAEs may serve as substrates for lipid oxidation. In Arabidopsis, PU-NAEs (NAE 18:2 and NAE 18:3) were the most abundant NAE species in seeds, and their levels were depleted during seedling growth even in FAAH tDNA knock-out plants. Therefore, we hypothesized that lipoxygenase (LOX) participated in the metabolism of PU-NAEs through the formation of NAE-oxylipins. Comprehensive chromatographic and mass spectrometric methods were developed to identify NAE hydroperoxides and -hydroxides. Recombinant Arabidopsis LOX enzymes expressed in Escherichia coli utilized NAE 18:2 and NAE 18:3 as substrates with AtLOX1 and AtLOX5 exhibiting 9-LOX activity and AtLOX2, AtLOX3, AtLOX4, and AtLOX6 showing predominantly 13-LOX activity. Feeding experiments with exogenous PU-NAEs showed they were converted to hydroxide metabolites indicating that indeed Arabidopsis seedlings had the capacity for LOX-mediated metabolism of PU-NAEs in planta. Detectable levels of endogenous NAE-oxylipin metabolites were identified in FAAH fatty acid amide hydrolase seedlings but not in wild-type or FAAH overexpressors, suggesting that NAE hydroxide pools normally do not accumulate unless flux through hydrolysis is substantially reduced. These data suggest that Arabidopsis LOXs indeed compete with FAAH to metabolize PU-NAEs during seedling establishment. Identification of endogenous amide-conjugated oxylipins suggests potential significance of these metabolites in vivo, and FAAH mutants may offer opportunities to address this in the future.
منابع مشابه
Ethanolamide oxylipins of linolenic acid can negatively regulate Arabidopsis seedling development.
N-Acylethanolamines (NAEs) are fatty-acid derivatives with potent biological activities in a wide range of eukaryotic organisms. Polyunsaturated NAEs are among the most abundant NAE types in seeds of Arabidopsis thaliana, and they can be metabolized by either fatty acid amide hydrolase (FAAH) or by lipoxygenase (LOX) to low levels during seedling establishment. Here, we identify and quantify en...
متن کاملA hyperresponsive 15-lipoxygenase phenotype in rabbit and human populations: relationship to atherosclerosis.
It i s generally recognized that high levels of low density lipoprotein are associated with the development of atherosclerosis A considerable body of evidence has accumulated to indicate that a critical step in atherogenesis, i s oxidation of LDL, and that circumstances that promote oxidation of LDL may constitute a major risk-factor for atherosclerosis (1) A major catalyst of lipoprotein oxida...
متن کاملThe impact of alteration of polyunsaturated fatty acid levels on C6-aldehyde formation of Arabidopsis thaliana leaves.
C6-aldehydes are synthesized via lipoxygenase/hydroperoxide lyase action on polyunsaturated fatty acid (PUFA) substrates in plant leaves. The source pools and subcellular location of the processes are unknown. A close relationship is found between the composition of PUFA and the composition of C6-aldehydes. In the current study, this relationship was tested using the Arabidopsis PUFA mutant lin...
متن کاملInhibition of Soybean Lipoxygenases – Structural and Activity Models for the Lipoxygenase Isoenzymes Family
Lipoxygenases (EC 1.13.11.12, linoleate:oxygen, oxidoreductases, LOXs) which are widely found in plants, fungi, and animals, are a large monomeric protein family with non-heme, non-sulphur, iron cofactor containing dioxygenases that catalyze the oxidation of polyunsaturated fatty acids (PUFA) as substrate with at least one 1Z, 4Z-pentadiene moiety such as linoleic, linolenic and arachidonic aci...
متن کاملOne electron redox reaction at lower oxygen content is common reaction in plants and mammalian lipoxygenases
Ferrous lipoxygenases seem to be activated through a feedback control mechanism via fatty acid hydroperoxides generated from polyunsaturated fatty acids (PUFAs) by partially existing ferric lipoxygenases. However, during leukotriene synthesis, feedback activation of ferrous 5-lipoxygenase in the presence of arachidonic acid (AA) was not observed. In the present study, we examined the feedback a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 17 شماره
صفحات -
تاریخ انتشار 2011